

Estimation et tests pour des mélanges de composantes hilbertiennes issues d'un dictionnaire continu

Clément Hardy

Soutenance de thèse, 16 février 2023

Motivation industrielle : spectroscopie

Wave numbers (cm-1)	Peak assignment
3690-3400-3364-3200-3014	-OH
2952-2920-2850	$\nu - CH_2, CH_3$ Aliphatic
1731	$\nu - C = O$
1647	$\nu - C = C \text{ de } HC = CH_2$
1540	$\nu - C = C \text{ de R-CR} = \text{CH-R}, \delta \text{ CH2 Aliphatic}$
1419	δCH_2 , δ -CH Aliphatic
1160-1082	ν Si-O (SiO ₂)
1009-909	ν Si-O (Si-OH)
825	C-Cl
664	CH Aromatic

Positions des pics d'absorption et composés chimiques associés pour des échantillons de polychloroprène ([Tchalla, 2017]).

Le modèle Un spectre $y = (y(t), t \in \mathbb{R})$ observé sur une grille t_1, \dots, t_T tel que:

$$\mathbf{y} = \underbrace{\sum_{k=1}^{s} \beta_{k}^{\star} \phi_{T}(\theta_{k}^{\star})}_{\text{mélange de pics}} + \underbrace{w}_{\text{bruit}}.$$

Objectif: retrouver à partir de y les paramètres β^* et $\vartheta^* = (\theta_1^*, \cdots, \theta_s^*)$.

Motivation : filtre passe-bas

• I Le modèle

• II Estimation

• III Tests

• IV Aspects numériques

Le modèle

Le modèle

On observe un élement aléatoire y d'un espace de Hilbert H_T (ex: \mathbb{R}^T , $L^2(\lambda_T),...$) muni d'un produit scalaire $\langle \cdot, \cdot \rangle_T$ (et d'une norme $\|\cdot\|_T$).

Notations

- T croît avec la qualité des observations (nombre d'observations, niveau du bruit...).
- $\Theta \subset \mathbb{R}$ est l'espace des paramètres.
- (φ_T(θ), θ ∈ Θ) sont des éléments normalisés de H_T formant un dictionnaire continu. L'application φ_T est continue sur Θ.
- w_T est un processus gaussien.

Le modèle : le bruit (I)

Hypothèse sur le bruit (H1)

Pour tout $f \in H_T$, la variable aléatoire $\langle f, w_T \rangle_T$ est une variable aléatoire gaussienne centrée satisfaisant:

$$\operatorname{Var}\left(\langle f, w_T \rangle_T\right) \leq \Delta_T \|f\|_T^2.$$

Le modèle : le bruit (I)

Hypothèse sur le bruit (H1)

Pour tout $f \in H_T$, la variable aléatoire $\langle f, w_T \rangle_T$ est une variable aléatoire gaussienne centrée satisfaisant:

$$\operatorname{Var}\left(\langle f, w_T \rangle_T\right) \leq \Delta_T \|f\|_T^2.$$

Ex: spectroscopie

- Grille régulière: t₁ < · · · < t_T sur ℝ de pas de discrétisation Δ_T = t_T-t₁/T.
- Observations: $y(t_i) = signal + w_T(t_i), \ 1 \le i \le T.$
- Bruit: $w_T(t_i)$ i.i.d $\sim \mathcal{N}(0, 1)$.

$$H_T = L^2(\lambda_T)$$
 où $\lambda_T(\mathrm{d}t) = \Delta_T \sum_{j=1}^T \delta_{t_j}(\mathrm{d}t)$.

 $\Delta_{\mathcal{T}} = \mathsf{pas} \mathsf{ de} \mathsf{ discrétisation}$.

Le modèle : le bruit (II)

Pour tout $f \in H_T$, la variable aléatoire $\langle f, w_T \rangle_T$ est une variable aléatoire gaussienne centrée satisfaisant:

$$\operatorname{Var}\left(\langle f, w_T \rangle_T\right) \leq \Delta_T \|f\|_T^2$$

Ex: filtre passe-bas

- Observations: (y(t), t ∈ ℝ/ℤ) t.q y ∈ L²(Leb).
- Bruit blanc tronqué: $w_T = \frac{1}{\sqrt{T}} \sum_{k=1}^T G_k \psi_k,$

 $-G_k \text{ i.i.d} \sim \mathcal{N}(0, 1),$ $-(\psi_k, k \in \mathbb{N}) \text{ b.o.n de } L^2(\text{Leb}).$

On a alors $||w_T||_{L^2(\text{Leb})}$ d'ordre 1.

Estimation

Estimation : risques d'estimation (I)

Estimateurs On construit un couple $(\hat{\beta}, \hat{\vartheta}) \in \mathbb{R}^K \times \Theta^K$ de fonctions mesurables de y "approchant" les paramètres du modèle $(\beta^* = (\beta_1^*, \cdots, \beta_s^*), \vartheta^* = (\theta_1^*, \cdots, \theta_s^*)).$ Risques d'estimation (I) composante estimée $\sum_{k=1}^{s} \left| \beta_k^{\star} - \sum_{\ell \in S_{\ell}(r)} \hat{\beta}_{\ell} \right| \quad \text{et} \quad \sum_{\ell \in S(r)^{c}} |\hat{\beta}_{\ell}|,$ comnosante réelle où l'ensemble d'indices S(r) est donné par: $S(r) = \bigcup_{1 \le k \le s} S_k(r),$ θ_1^{\star} θ_2^{\star} avec $S_k(r) = \left\{ \ell, \, \hat{\beta}_\ell \neq 0 \text{ et } \mathfrak{d}_T(\hat{\theta}_\ell, \theta_k^\star) \leq r \right\}.$

Estimation : risques d'estimation (II)

Estimateurs

On construit un couple $(\hat{\beta}, \hat{\vartheta}) \in \mathbb{R}^K \times \Theta^K$ de fonctions mesurables de y "approchant" les paramètres du modèle $(\beta^* = (\beta_1^*, \cdots, \beta_s^*), \vartheta^* = (\theta_1^*, \cdots, \theta_s^*))$.

Estimation : définition des estimateurs

Estimation : définition des estimateurs

Estimation : le Beurling Lasso (I)

Estimation : le Beurling Lasso (II)

Le Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \quad \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$}$$

Estimation : le Beurling Lasso (II)

Le Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \quad \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$}$$

Lien entre $\mathcal{P}_1(\kappa)$ et $\mathcal{P}_2(\kappa)$

- Existence d'une solution à $\mathcal{P}_2(\kappa)$ [Bredies & Pikkarainen, 2013].
- Si $\mathcal{P}_2(\kappa)$ admet une solution $\hat{\mu} = \sum_{k=1}^{K} \hat{\beta}_k \delta_{\hat{\theta}_k}$ alors $(\hat{\beta}, \hat{\vartheta})$ est solution de $\mathcal{P}_1(\kappa)$.
- Lorsque H_T est de dimension finie égale à K, il existe une solution à P₂(κ) composée d'au plus K atomes [Boyer et al, 2019].

Estimation : le Beurling Lasso (II)

Le Beurling Lasso [De Castro & Gamboa, 2012]

$$\min_{\mu \in \mathcal{M}(\Theta_T)} \quad \frac{1}{2} \| y - \langle \phi_T, \mu \rangle \|_T^2 + \kappa \| \mu \|_{TV}. \tag{$\mathcal{P}_2(\kappa)$}$$

Lien entre $\mathcal{P}_1(\kappa)$ et $\mathcal{P}_2(\kappa)$

- Existence d'une solution à $\mathcal{P}_2(\kappa)$ [Bredies & Pikkarainen, 2013].
- Si $\mathcal{P}_2(\kappa)$ admet une solution $\hat{\mu} = \sum_{k=1}^{K} \hat{\beta}_k \delta_{\hat{\theta}_k}$ alors $(\hat{\beta}, \hat{\vartheta})$ est solution de $\mathcal{P}_1(\kappa)$.
- Lorsque H_T est de dimension finie égale à K, il existe une solution à P₂(κ) composée d'au plus K atomes [Boyer et al, 2019].

Ex : filtre passe-bas

L'espace d'observation est $H_T = L^2$ (Leb).

Estimation : de l'intérêt des méthodes sans grille

Estimation utilisant une grille sur l'espace des paramètres

- Discrétiser l'espace des paramètres sur une grille de K points θ^G = (θ^G₁, · · · , θ^G_K).
- Résoudre le problème Lasso:

$$\hat{\beta} \in \underset{\beta \in \mathbb{R}^{K}}{\operatorname{argmin}} \quad \frac{1}{2} \| y - \beta \Phi_{\mathcal{G}} \|_{T}^{2} + \kappa \| \beta \|_{\ell_{1}},$$

où $\Phi_{\mathcal{G}} = (\phi_{T}(\theta_{1}^{\mathcal{G}}), \cdots, \phi_{T}(\theta_{K}^{\mathcal{G}}))^{\top}.$

Estimation : de l'intérêt des méthodes sans grille

Estimation utilisant une grille sur l'espace des paramètres

- Discrétiser l'espace des paramètres sur une grille de K points θ^G = (θ^G₁, · · · , θ^G_K).
- Résoudre le problème Lasso:

$$\hat{\beta} \in \underset{\beta \in \mathbb{R}^{K}}{\operatorname{argmin}} \quad \frac{1}{2} \| y - \beta \Phi_{\mathcal{G}} \|_{T}^{2} + \kappa \| \beta \|_{\ell_{1}},$$

où
$$\Phi_{\mathcal{G}} = (\phi_{\mathcal{T}}(\theta_1^{\mathcal{G}}), \cdots, \phi_{\mathcal{T}}(\theta_K^{\mathcal{G}}))^{\top}.$$

Inconvénients liés au raffinement de la grille sur Θ

- Corrélation forte entre les lignes de $\Phi_{\mathcal{G}} \implies$ pb. num.
- Explosion du nombre de points nécessaires dans la grille lorsque $\Theta \subset \mathbb{R}^d.$
- Dans le modèle de pics translatés: formation de clusters de pics au voisinage des positions des pics à estimer [Duval & Peyré, 2017].

Estimation : méthodes sans grille

Estimation : hypothèses (I)

Hypothèses sur la régularité du dictionnaire (H2)

• $\phi_T : \Theta \to H_T$ est \mathcal{C}^3 et $\|\phi_T(\theta)\|_T = 1$ sur Θ . • $\|\partial_{\theta}\phi_T(\theta)\|_T^2 > 0 \text{ sur } \Theta.$

Estimation : hypothèses (II)

Noyau et noyau approximant

On définit un noyau sur Θ^2 pour mesurer la corrélation entre les composantes du dictionnaire:

$$\mathcal{K}_{\mathcal{T}}(\theta, \theta') = \langle \phi_{\mathcal{T}}(\theta), \phi_{\mathcal{T}}(\theta') \rangle_{\mathcal{T}},$$

ainsi qu'un noyau approximant symétrique $\mathcal{K}^{\text{prox}}$ sur $\Theta^2_\infty.$

Estimation : hypothèses (II)

Noyau et noyau approximant

On définit un noyau sur Θ^2 pour mesurer la corrélation entre les composantes du dictionnaire:

$$\mathcal{K}_{\mathcal{T}}(\theta, \theta') = \langle \phi_{\mathcal{T}}(\theta), \phi_{\mathcal{T}}(\theta') \rangle_{\mathcal{T}},$$

ainsi qu'un noyau approximant symétrique $\mathcal{K}^{\text{prox}}$ sur Θ_{∞}^2 .

Estimation : hypothèses (II)

Noyau et noyau approximant

On définit un noyau sur Θ^2 pour mesurer la corrélation entre les composantes du dictionnaire:

$$\mathcal{K}_{\mathcal{T}}(\theta, \theta') = \langle \phi_{\mathcal{T}}(\theta), \phi_{\mathcal{T}}(\theta') \rangle_{\mathcal{T}},$$

ainsi qu'un noyau approximant symétrique $\mathcal{K}^{\text{prox}}$ sur Θ_{∞}^2 .

Ex: spectroscopie

$$\Delta_T \to 0$$
 et $\sigma_T = cst$, $\mathcal{K}^{\text{prox}} = \lim_{T \to +\infty} \mathcal{K}_T$.

Hypothèses sur la régularité du noyau approximant (H3)

- Le noyau $\mathcal{K}^{\text{prox}}$ est $\mathcal{C}^{3,3}$ avec des dérivées bornées + autres régularités.
- Le noyau \mathcal{K}^{prox} est localement concave sur la diagonale et strictement inférieur à 1 en dehors.

Estimation : hypothèses (III)

Métrique de Fisher sur l'espace des paramètres

$$\mathfrak{d}_{\mathcal{K}}(\theta, \theta') = \inf_{\gamma} \int_{0}^{1} |\dot{\gamma}_{s}| \sqrt{\partial_{x, y} \mathcal{K}(\gamma_{s}, \gamma_{s})} \, \mathrm{d}s$$

inf. sur l'ensemble des chemins réguliers $\gamma:[0,1]\to \Theta$ tels que $\gamma_0=\theta$ et $\gamma_1=\theta'.$

 $\rightarrow \text{ invariance } \mathfrak{d}_{\mathcal{K}_{\phi}}(\theta, \theta') = \mathfrak{d}_{\mathcal{K}_{\phi \circ h}}(h^{-1}(\theta), h^{-1}(\theta')).$

Estimation : hypothèses (III)

Métrique de Fisher sur l'espace des paramètres

$$\mathfrak{d}_{\mathcal{K}}(\theta, \theta') = \inf_{\gamma} \int_{0}^{1} |\dot{\gamma}_{s}| \sqrt{\partial_{x, y} \mathcal{K}(\gamma_{s}, \gamma_{s})} \, \mathrm{d}s$$

inf. sur l'ensemble des chemins réguliers $\gamma:[0,1]\to \Theta$ tels que $\gamma_0=\theta$ et $\gamma_1=\theta'.$

$$o$$
 invariance $\mathfrak{d}_{\mathcal{K}_{\phi}}(heta, heta') = \mathfrak{d}_{\mathcal{K}_{\phi\circ h}}(h^{-1}(heta),h^{-1}(heta')).$

Exemples unidimensionnels

• Modèles de pics translatés (spectroscopie / filtre passe-bas):

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta, \theta') \sim \frac{|\theta - \theta'|}{\sigma_{\mathcal{T}}}$$
 (métrique euclidienne).

• Modèles d'échelle: $H = L^2(\text{Leb})$ et $\phi(\theta) \propto e^{-\theta}$ avec $\Theta = \mathbb{R}^*_+$ et

$$\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta, \theta') \propto |\log(\theta/\theta')|.$$

On a $\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta, \theta + \varepsilon) \xrightarrow[\theta \to 0]{} + \infty \ (\neq \text{ métrique euclidienne}).$

Estimation : hypothèses (IV)

Proximité de $\mathcal{K}_{\mathcal{T}}$ et $\mathcal{K}^{\text{prox}}$

• Proximité entre les noyaux:

$$\mathcal{V}_{\mathcal{T}} = \max_{i,j \in \{0,\cdots,3\}} \sup_{\Theta_{\mathcal{T}}^2} |\mathcal{K}_{\mathcal{T}}^{[i,j]} - \mathcal{K}^{\mathsf{prox}[i,j]}|.$$

• Equivalence de $\mathfrak{d}_{\mathcal{K}_T}$ et $\mathfrak{d}_{\mathcal{K}^{\text{prox}}}$: $\mathfrak{d}_{\mathcal{K}^{\text{prox}}} / \rho_T \leq \mathfrak{d}_{\mathcal{K}_T} \leq \rho_T \mathfrak{d}_{\mathcal{K}^{\text{prox}}}$.

Estimation : hypothèses (IV)

Proximité de \mathcal{K}_T et $\mathcal{K}^{\text{prox}}$

• Proximité entre les noyaux:

$$\mathcal{V}_{\mathcal{T}} = \max_{i,j \in \{0,\cdots,3\}} \ \sup_{\Theta_{\mathcal{T}}^2} |\mathcal{K}_{\mathcal{T}}^{[i,j]} - \mathcal{K}^{\mathsf{prox}[i,j]}|.$$

• Equivalence de $\mathfrak{d}_{\mathcal{K}_T}$ et $\mathfrak{d}_{\mathcal{K}^{\text{prox}}}$: $\mathfrak{d}_{\mathcal{K}^{\text{prox}}} / \rho_T \leq \mathfrak{d}_{\mathcal{K}_T} \leq \rho_T \mathfrak{d}_{\mathcal{K}^{\text{prox}}}$.

Hypothèses de proximité entre \mathcal{K}_T et $\mathcal{K}^{\text{prox}}$ (H4)

 $s \mathcal{V}_T \leq C$ et $\rho_T \leq \rho$.

Estimation : hypothèses (IV)

Proximité de \mathcal{K}_T et $\mathcal{K}^{\text{prox}}$

• Proximité entre les noyaux:

$$\mathcal{V}_{\mathcal{T}} = \max_{i,j \in \{0,\cdots,3\}} \ \sup_{\Theta_{\mathcal{T}}^2} |\mathcal{K}_{\mathcal{T}}^{[i,j]} - \mathcal{K}^{\mathsf{prox}[i,j]}|.$$

• Equivalence de $\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}$ et $\mathfrak{d}_{\mathcal{K}^{\text{prox}}}$: $\mathfrak{d}_{\mathcal{K}^{\text{prox}}} / \rho_{\mathcal{T}} \leq \mathfrak{d}_{\mathcal{K}_{\mathcal{T}}} \leq \rho_{\mathcal{T}} \mathfrak{d}_{\mathcal{K}^{\text{prox}}}$.

Hypothèses de proximité entre $\mathcal{K}_{\mathcal{T}}$ et $\mathcal{K}^{\text{prox}}$ (H4)

$$s \mathcal{V}_T \leq C$$
 et $\rho_T \leq \rho$.

Estimation : borne sur les risques de prédiction et d'estimation

Théorème 1

On observe $y \in H_T$ de paramètres inconnus $\beta^* \in \mathbb{R}^s$ et $\vartheta^* = (\theta_1^*, \dots, \theta_s^*) \in \Theta_T^s$ avec $s \leq K$ tel que les hypothèses H1-H4 sont vérifiées et pour tout $\ell \neq k$,

 $\mathfrak{d}_{\mathcal{K}_{\mathcal{T}}}(\theta_{\ell}^{\star}, \theta_{k}^{\star}) \gtrsim \delta(s)$ (séparation).

Alors, on a pour les estimateurs $\hat{\beta}$ et $\hat{\vartheta}$ définis par $\mathcal{P}_1(\kappa)$ avec

 $\kappa \geq \mathcal{C}_1 \sqrt{\Delta_{\mathcal{T}} \log \tau} \quad \text{ et } \quad \tau > 1,$

les bornes suivantes sur les risques de prédiction et d'estimation:

$$\begin{split} \left\| \beta^{\star} \, \Phi_{\mathcal{T}}(\vartheta^{\star}) - \hat{\beta} \, \Phi_{\mathcal{T}}(\vartheta) \right\|_{\mathcal{T}} &\leq \mathcal{C}_{0} \, \sqrt{s} \, \kappa, \\ \sum_{k=1}^{s} \left| |\beta_{k}^{\star}| - \sum_{\ell \in S_{k}(r)} |\hat{\beta}_{\ell}| \right| &+ \sum_{k=1}^{s} \left| \beta_{k}^{\star} - \sum_{\ell \in S_{k}(r)} \hat{\beta}_{\ell} \right| &+ \left\| \hat{\beta}_{S(r)^{c}} \right\|_{\ell_{1}} \leq \mathcal{C}_{0} \, \kappa \, s. \\ \text{avec probabilité au moins: } 1 - \mathcal{C}_{2} \left(\frac{|\Theta_{\mathcal{T}}|_{\mathfrak{d}_{\mathcal{T}}}}{\tau \sqrt{\log \tau}} \vee \frac{1}{\tau} \right). \end{split}$$

Remarque: les bornes ne dépendent pas de K!

Estimation : séparation entre les paramètres

Estimation : séparation entre les paramètres

Estimation : séparation entre les paramètres

Estimation : borne sur le risque de prédiction (spectroscopie)

Estimation : borne sur le risque de prédiction (spectroscopie)

Estimation : structure commune entre plusieurs signaux

Modèle (plusieurs signaux)

On observe *n* signaux $(Y(i) \in H_T, 1 \le i \le n)$ dont l'union des composantes est de cardinal *s*:

$$Y(i) = \sum_{k=1}^{s} B_k^{\star}(i) \phi_T(\theta_k^{\star}) + W_T(i) \quad \text{pour} \quad 1 \leq i \leq n,$$

où les coefficients linéaires sont obtenus par l'application $B^*: i \mapsto B^*(i) = (B_1^*(i), \ldots, B_s^*(i)).$

$$W_T(i)$$
 i.i.d $\sim w_T$.

Estimation : structure commune entre plusieurs signaux

Modèle (plusieurs signaux)

On observe *n* signaux $(Y(i) \in H_T, 1 \le i \le n)$ dont l'union des composantes est de cardinal *s*:

$$Y(i) = \sum_{k=1}^{s} B_k^{\star}(i) \, \phi_T(heta_k^{\star}) + W_T(i) \quad ext{pour} \quad 1 \leq i \leq n,$$

où les coefficients linéaires sont obtenus par l'application $B^* : i \mapsto B^*(i) = (B_1^*(i), \ldots, B_s^*(i)).$

$$W_T(i)$$
 i.i.d $\sim w_T$.

Question

Reconstruction simultanée v.s individuelle: peut-on tirer profit de la structure commune des signaux pour accélérer leur reconstruction à partir des observations ?

Estimation: reconstruction simultanée

 Bibliographie
 Group-Lasso pour les modèles linéaires [Yuan & Lin, 2006], résultats d'optimalité (au sens minimax) [Lounici, Pontil, van de Geer & Tsybakov, 2011].

• Group-BLasso [Golbabae & Poon, 2022].

Estimation : reconstruction simultanée v.s individuelle

Estimation : reconstruction simultanée v.s individuelle

Estimation : reconstruction simultanée v.s individuelle

 \rightarrow La borne sur le risque de prédiction obtenue est de l'ordre de celle obtenue pour l'estimateur Group-Lasso dans le cadre du modèle de régression linéaire de grande dimension.

Tests

Tests : $\beta^* \Phi_T(\vartheta^*) = \beta^0 \Phi_T(\vartheta^0)$

Test d'adéquation à un modèle: Soient $(\beta^0, \vartheta^0) \in (\mathbb{R}^*)^{s^0} \times \Theta_T^{s^0}$ (connus) et $(\beta^*, \vartheta^*) \in (\mathbb{R}^*)^s \times \Theta_T^s$ (inconnus). $\begin{cases}
H_0 & : \quad \beta^* \Phi_T(\vartheta^*) = \beta^0 \Phi_T(\vartheta^0), \\
H_1(\rho) & : \quad \left\|\beta^* \Phi_T(\vartheta^*) - \beta^0 \Phi_T(\vartheta^0)\right\|_T \ge \rho.
\end{cases}$ **Tests** : $\beta^* \Phi_T(\vartheta^*) = \beta^0 \Phi_T(\vartheta^0)$

Test d'adéquation à un modèle:

Soient $(\beta^0, \vartheta^0) \in (\mathbb{R}^*)^{s^0} \times \Theta^{s^0}_T$ (connus) et $(\beta^*, \vartheta^*) \in (\mathbb{R}^*)^s \times \Theta^s_T$ (inconnus).

$$\begin{cases} H_0 & : \quad \beta^* \Phi_{\mathcal{T}}(\vartheta^*) = \beta^0 \Phi_{\mathcal{T}}(\vartheta^0), \\ H_1(\rho) & : \quad \left\| \beta^* \Phi_{\mathcal{T}}(\vartheta^*) - \beta^0 \Phi_{\mathcal{T}}(\vartheta^0) \right\|_{\mathcal{T}} \ge \end{cases}$$

ρ.

Risque et séparation minimale

Un test Ψ est une fonction mesurable de y à valeurs dans $\{0, 1\}$: $\Psi = 0$ acceptation de H_0 et $\Psi = 1$ rejet de H_0 .

• Le risque de test maximal:

$$R_{\rho}(\Psi) = \underbrace{\sup_{\substack{(\beta^{\star}, \vartheta^{\star}) \in H_{0} \\ \text{Rejeter } H_{0} \text{ à tord}}}_{\text{Rejeter } H_{0} \text{ à tord}} \underbrace{+ \underbrace{\sup_{\substack{(\beta^{\star}, \vartheta^{\star}) \in H_{1}(\rho) \\ \text{Accepter } H_{0} \text{ à tord}}}_{\text{Accepter } H_{0} \text{ à tord}} \mathbb{E}_{\beta^{\star}, \vartheta^{\star}}[1 - \Psi].$$

• La séparation minimax du problème de test pour $\alpha \in (0, 1)$:

$$\rho^{\star}(\alpha) = \inf\{\rho > 0 : \inf_{\Psi} R_{\rho}(\Psi) \leq \alpha\}.$$

Tests : borne sur la séparation minimax

Tests : borne sur la séparation minimax

Tests : détection de signal

Corollaire 1

Processus discret sur une grille régulière de T points sur le tore \mathbb{R}/\mathbb{Z} avec $w_T(t_j)$ i.i.d $\sim \mathcal{N}(0,1)$ pour $1 \leq j \leq T$.

$$egin{array}{ll} H_0 & : & oldsymbol{s} = 0, \ H_1(
ho) & : & \left\|eta^\star
ight\|_{\ell_2} \geq
ho \end{array}$$

La borne devient:

$$\rho^{\star}(\alpha) \lesssim \min\left(\frac{1}{(\alpha T)^{\frac{1}{4}}}, \sqrt{\frac{s}{T}\log\left(\frac{c}{\alpha \, \sigma_{T}}\right)}\right),$$

Tests : détection de signal

Corollaire 1

Processus discret sur une grille régulière de T points sur le tore \mathbb{R}/\mathbb{Z} avec $w_T(t_j)$ i.i.d $\sim \mathcal{N}(0,1)$ pour $1 \leq j \leq T$.

$$egin{cases} H_0 & : & oldsymbol{s} = oldsymbol{0}, \ H_1(
ho) & : & \left\|eta^\star
ight\|_{\ell_2} \geq
ho \end{cases}$$

La borne devient:

$$\rho^{\star}(\alpha) \lesssim \min\left(\frac{1}{(\alpha T)^{\frac{1}{4}}}, \sqrt{\frac{s}{T}\log\left(\frac{c}{\alpha \sigma_{T}}\right)}\right),$$

 \rightarrow On peut en déduire une borne sup. sur la séparation minimax asymptotique (*i.e* $s, T \rightarrow \infty$) \approx borne inf. sur la séparation minimax asymptotique pour le modèle de régression linéaire en grande dimension [Ingster, Tsybakov & Verzelen, 2010].

Aspects numériques

Aspects numériques : application à la spectroscopie IR

Aspects numériques : application à la spectroscopie IR

Aspects numériques : application à la spectroscopie IR

Dispersion des amplitudes associées aux 10 principaux pics d'absorption déterminés pour les spectres de polychloroprène vieilli en milieu marin.

Regroupement des spectres de polychloroprène vieilli en milieu marin par niveaux d'usure.

GitHub: ClementHardy/PySFW

Conclusion et perspectives

Estimation et tests

Sous des conditions de séparation entre les paramètres non linéaires à estimer:

- Risques de prédiction de l'ordre de ceux connus lorsque ϑ^* est donné.
- Reconstruction simultanée > reconstruction individuelle lorsque les signaux partagent une structure commune.
- Intensité minimale pour la détection d'un signal de l'ordre de celle nécessaire pour le modèle de régression linéaire en grande dimension.

Perspectives

- $\Theta \subseteq \mathbb{R}^d$
- Tester H₀: Q^{*} = {θ^{*}₁, · · · , θ^{*}_s} ⊆ Q⁰ sans contraintes sur les signes des entrées de β^{*}.
- Améliorer les conditions de séparation.