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Context of the study

• Infrared spectra measure the interaction of infrared radiations with

the matter and reveal the presence of chemical substances in a

material.

• Infrared spectroscopy has become widespread in the industry for

nondestructive testing.
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Context of the study

Infrared spectroscopy for nondestructive testing

Location of peaks and corresponding

bonds for polychloroprene ([Tchalla,

2017]).
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Context of the study

Dealing with a large dataset of infrared spectra

Infrared spectra from 72 polychloroprene rubbers used in a marine environment

at different aging levels.

3



Context of the study

• Analyzing infrared spectra

usually requires an expertise

(guess on the locations of

peaks, numbers of peaks...).

• Principal component analysis or

partial least square analysis

produce results for which it is

difficult to give a physical

interpretation.

Our goal is to recover in an automatic and simultaneous way the peaks

(locations and amplitudes) associated with the chemical compounds of a

material.
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Context of the study

→ Recover the locations of the peaks to identify chemical substances

→ Recover the amplitudes of the peaks to determine concentrations
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The Model



The Model

The spectra are modeled by linear combinations of peaks whose shape

and position are parametrized with an additive noise.

y(σj) =
K∑

k=1

β?k φ(θ?k , σj) + wj ,

1 ≤ j ≤ T .

• wj ∼ N (0, s2), i .i .d ,

• φ(θ?k , σj) =
ϕ(θ?k ,σj )√

∆T‖ϕ(θ?k ,·)‖`2

,

• θ?k ∈ Θ ⊂ Rd ,

where ∆T is the step in the

discretization scheme.
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The model

Shape of the parametric family :

ϕGauss : Θ×D → R

((µ, ν), σ) 7→ exp

(
− (σ − µ)2

2ν2

)

ϕLorentz : Θ×D → R

((µ, ν), σ) 7→ 1

1 + (σ−µ)2

2ν2 Gaussian and Lorentz functions with

the same half-width.
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The Model

We observe n spectra (yi )1≤i≤n discretized onT wavenumbers (σj)1≤j≤T .

yi (σj) =
K∑

k=1

B?ik φ(θ?k , σj) + wij ,

1 ≤ j ≤ T , 1 ≤ i ≤ n.

• wij ∼ N (0, s2), i .i .d ,

• S? = {k, ||B?.,k || 6= 0}.

The matrix B? is sparse columnwise, i.e Card(S?) < K .

The peaks are shared by all the spectra in the dataset but their

amplitudes are specific to each spectrum.
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The Model

A matrix form for the model:

Y = B?Φ(ϑ?) + W

• Yi,j = yi (σj), Y ∈ Rn×T

• ϑ? = (θ?1 , · · · , θ?K ) , ϑ? ∈ Rd×K

• Φ(ϑ)k,j = φ(θk , σj), Φ(ϑ) ∈ RK×T

• Wij ∼ N (0, s2), i .i .d , W ∈ Rn×T

9



The Model

A matrix form for the model:

Y = B?Φ(ϑ?) + W , Y ∈ Rn×T

• K is an upper bound of the number of peaks in the mixture

(arbitrarily large).

• B? is sparse columnwise.
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The model

→ Recover the locations of the peaks ϑ?S?

→ Recover the amplitudes of the peaks B?

up to a joint permutation on the columns of B? and ϑ?S? .
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Optimization Problem



Optimization Problem

We formulate a non-linear least square problem with a Group-Lasso

penalization term weighted by a real parameter λ > 0 :

(B̂, ϑ̂) ∈ argmin
B∈Rn×K ,ϑ∈ΘK,T (h)

1

2nT
||Y − BΦ(ϑ)||2`2

+ λ||B||1,2

• ‖B‖1,2 =
K∑

k=1

‖B·,k‖`2

• ΘK ,T (h) ⊂ ΘK with h > 0, is the set of parameters

ϑ = (θ1, · · · , θK ) ∈ ΘK such that for all 1 ≤ `, k ≤ K , ` 6= k:

∆T |〈φ(θ`), φ(θk)〉| < h.
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Optimization Problem

We formulate a non-linear least square problem with a Group-Lasso

penalization term weighted by a real parameter λ > 0 :

(B̂, ϑ̂) ∈ argmin
B∈Rn×K ,ϑ∈ΘK,T (h)

1

2nT
||Y − BΦ(ϑ)||2`2

+ λ||B||1,2

The set Ŝ gathers the indices of the active peaks used to fit the spectra :

Ŝ = {k : there exists 1 ≤ i ≤ n, B̂ik 6= 0}.

→ B̂ et ϑ̂Ŝ are estimators of B? and ϑ?S? (up to a joint permutation on

the columns of B? and ϑ?S?).
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Algorithm



Algorithm

One would like to solve the problem:

(B̂, ϑ̂) ∈ argmin
B∈Rn×K ,ϑ∈ΘK,T (h)

1

2nT
||Y − BΦ(ϑ)||2`2

+ λ||B||1,2

→ Non convex problem!
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Algorithm 1:

Data: Y Output: ϑ,B

Input: ϕ, λ, h Initialize: i := 0, R(0) := Y , ϑ(0) := ∅
while i < K do

θ(i+ 1
2

) ∈ argmax
θ∈Θ

∥∥R(i)φ(θ)>
∥∥2

`2

ϑ(i+ 1
2

) =
(
ϑ(i), θ(i+ 1

2
)
)

B(i+ 1
2

) ∈ argmin
B∈Rn×(i+1)

+

Fλ,ϕ(B, ϑ(i+ 1
2

))

ϑ(i+1) ∈ argmin
ϑ∈Θi+1

Fλ,ϕ(B(i), ϑ) initialized in ϑ(i+ 1
2

)

Merging routine (ϑ(i+1), h)

B(i+1) ∈ argmin
B∈Rn×(i+1)

+

Fλ,ϕ(B, ϑ(i+1))

R(i+1) = Y − B(i+1)Φ(ϑ(i+1))

i = i + 1

end

We note for a matrix B ∈ Rn×m et ϑ ∈ Θm,

Fλ,ϕ(B, ϑ) =
1

2nT
‖Y − BΦ(ϑ)‖2

`2
+ λ‖B‖1,2.
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An application to group

polychloroprene samples with

respect to aging



Resolution for spectra from polychloroprene rubbers

Mean square error F0,ϕ(B̂(λ), ϑ̂(λ))

and penalized mean square error

Fλ,ϕ(B̂(λ), ϑ̂(λ)) seen as functions of

λ.

Number of peaks found by the

algorithm to fit the spectra of

polychloroprene samples as a function

of the tuning parameter λ.

We note for a matrix B ∈ Rn×m et ϑ ∈ Θm,

Fλ,ϕ(B, ϑ) =
1

2nT
‖Y − BΦ(ϑ)‖2

`2
+ λ‖B‖1,2.
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Resolution for spectra from polychloroprene rubbers

Boxplot for the amplitudes of the 10

most significant peaks for the 72

polychloroprene spectra in the dataset.

The locations of the peaks found by the algorithm are consistent with

those established by previous work in the field of chemistry.
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Clustering for spectra from polychloroprene rubbers

We run a k-means on the n vectors of amplitude B̂i,. ∈ RK

The k-means algorithm aims to partition the n vectors into M sets

A = {A1, · · · ,AM} with barycenters {β1, · · · , βM} so as to minimize the

within-cluster sum of squares : min
A

M∑
`=1

∑
i∈A`

∥∥∥B̂i,. − β`
∥∥∥2

`2︸ ︷︷ ︸
:=I (M)

.
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Aging process of polychloroprene rubbers

• Running a k-means on the

amplitude vectors

B̂i,. ∈ RK , 1 ≤ i ≤ n

• Running a k-means on the

amplitude vectors restricted to

silica, silanol and carbonyl

peaks

→ It yields the same results.

The main differences between the spectra are due to

the peaks of carbonyl, silanol and silica.
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Aging process of polychloroprene rubbers

Previous work in chemistry has also shown that the amplitudes of peaks at

1731 cm−1 (Carbonyls), 1160− 1082 (Silice) cm−1 and 1009− 909

cm−1(Silanol) evolve with age (hydrolysis of silica and oxidation reaction) in a

marine environment ([Le Gac et al., 2012]).
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Conclusion

• The spectra are modeled under the physical constraints by linear

combinations of peaks.

• A numerical method is proposed with an off-the-grid scheme to

estimate the parameters of the model.

• The parameters have a physical interpretation.

• This general framework can be applied to many other branches of

spectroscopy.
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